

Bimetallic Cluster Complexes: The Synthesis, Structures, and Bonding of Ruthenium Carbonyl Cluster Complexes Containing Palladium and Platinum with the Bulky Tri-tert-butyl-phosphine Ligand

Richard D. Adams,*,† Burjor Captain,† Wei Fu,† Michael B. Hall,‡ Josiah Manson,‡ Mark D. Smith,[†] and Charles Edwin Webster[‡]

Contribution from the Department of Chemistry and Biochemistry and the USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255

Received November 11, 2003; E-mail: adams@mail.chem.sc.edu

Abstract: The bis-phosphine compounds $M(PBu_{3}^{t})_{2}$, M = Pd and Pt, readily eliminate one PBu_{3}^{t} ligand and transfer MPBut₃ groups to the ruthenium-ruthenium bonds in the compounds Ru₃(CO)₁₂, Ru₆(CO)₁₇-(μ_6 -C), and Ru₆(CO)₁₄(η^6 -C₆H₆)(μ_6 -C) without displacement of any of the ligands on the ruthenium complexes. The new compounds, Ru₃(CO)₁₂[Pd(PBu^t₃)]₃, **10**, and Ru₆(CO)₁₇(µ₆-C)[Pd(PBu^t₃)]₂, **11**, Ru₆(CO)₁₇(µ₆-C)- $[Pt(PBut_3)]_n$, n = 1 (12), n = 2 (13), and $Ru_6(CO)_{14}(\eta^6 - C_6H_6)(\mu_6 - C)[Pd(PBut_3)]_n$, n = 1 (15), n = 2 (16), have been prepared and structurally characterized. In most cases the MPBu¹₃ groups bridge a pair of mutually bonded ruthenium atoms, and the associated Ru-Ru bond distance increases in length. Fenske-Hall calculations were performed on 10 and 11 to develop an understanding of the electron deficient metalmetal bonding. 10 undergoes a Jahn-Teller distortion to increase bonding interactions between neighboring Ru(CO)₄ and Pd(PBut₃) fragments. 11 has seven molecular orbitals important to cluster bonding in accord with cluster electron-counting rules.

Introduction

Heteronuclear (mixed-metal) cluster complexes have been shown to be good precursors for the preparation of supported bimetallic nanoparticles.¹⁻⁸ On supports these nanoparticles have proven to be highly active catalysts.^{9,10} Palladium-ruthenium and platinum-ruthenium clusters supported on mesoporous silica have been shown to exhibit high activity for catalytic hydrogenation reactions.^{9,10}

[†] University of South Carolina.

- Toshima, N.; Yonezawa, T. New J. Chem. 1998, 1179.
 Johnson, B. F. G. Coord. Chem. Rev. 1999, 192, 1269.
- (3) Midgley, P. A.; Weyland, M.; Thomas, J. M.; Johnson, B. F. G. Chem. Commun. 2001, 907.
- (4) Nashner, M. S.; Frenkel, A. I.; Somerville, D.; Hills, C. W.; Shapley, J.
- (4) Rushner, M. S., Frenker, A. I., Sometrie, D., Hins, C. W., Shapley, J. R., Nuzzo, R. G. J. Am. Chem. Soc. **1998**, *120*, 8093.
 (5) Nashner, M. S.; Frenkel, A. I.; Adler, D. L.; Shapley, J. R.; Nuzzo, R. G. J. Am. Chem. Soc. **1997**, *119*, 7760.
 (6) Shephard, D. S.; Maschmeyer, T.; Johnson, B. F. G.; Thomas, J. M.; Sankar, G.; Ozkaya, D.; Zhou, W.; Oldroyd, R. D.; Bell, R. G. Angew. Chem., Int. Ed. E. J. **1007**. Ed. Engl. **1997**, 36, 2242.
- (7) Raja, R.; Sankar, G.; Hermans, S.; Shephard, D. S.; Bromley, S.; Thomas,
- J. M.; Johnson, B. F. G. *Chem. Commun.* **1999**, 1571.
 (8) Shephard, D. S.; Maschmeyer, T.; Sankar, G.; Thomas, J. M.; Ozkaya, D.; Johnson, B. F. G.; Raja, R.; Oldroyd, R. D.; Bell, R. G. *Chem. Eur. J.* 1998, 4, 1214.
- (9) (a) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20. (b) Braustein, P.; Rose, J. In Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Eds.; VCH: New York, 1998; Chapter 13, p 443.
- (10) (a) Raja, R.; Khimyak, T.; Thomas, J. M.; Hermans, S.; Johnson, B. F. G. Angew. Chem., Int. Ed. 2001, 40, 4638. (b) Hermans, S.; Raja, R.; Thomas, J. M.; Johnson, B. F. G.; Sankar, G.; Gleeson, D. Angew. Chem., Int. Ed. 2001, 40, 1211. (c) Raja, R.; Sankar, G.; Hermans, S.; Shephard, D. S.; Bromley, S.; Thomas, J. M.; Johnson, B. F. G.; Maschemeyer, T. Chem. Commun. 1999, 1571.

Significant advances have been made in the systematics of the syntheses of heteronuclear metal cluster complexes over the past 20 years.¹¹ Bridging ligands derived from the main group elements are widely used as agents for the aggregation and stabilization of metal clusters.¹²

We have recently shown that the bis-phosphine compounds $M(PBu_{3}^{t})_{2}$, M = Pd and Pt, are excellent reagents for the transfer MPBut₃ groups to ruthenium-ruthenium and rutheniumplatinum bonds to yield a variety of new heteronuclear cluster complexes that employ delocalized bonding schemes.¹³ For example, we have recently reported the complex $Ru_5(CO)_{15}$ -(C)[PtPB u_3], 1, formed by the addition of a Pt(PB u_3) group to the square-pyramidal pentaruthenium cluster complex Ru₅- $(CO)_{15}(\mu_5-C)$. Interestingly, compound **1** exists in solution as a

[‡] Texas A&M University.

^{(11) (}a) Adams, R. D. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 10, p 1. (b) Adams, R. D. In The Chemistry of Metal Cluster Complexes; Shriver, H. D., Kaesz, H. D., Adams, R. D., Eds.; VCH: New York, 1990; Chapter 3, p 121. (c) Roberts, D. A.; Geoffroy, G. L. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 6, Chapter 40, p 763.

 ^{(12) (}a) Hidai, M.; Kuwata, S.; Mizobe, Y. Acc. Chem. Res. 2000, 33, 46. (b) Whitmire, K. H. Adv. Organomet. Chem. 1998, 42, 1. (c) Audi Fong, S.-W.; Hor, T. S. A. J. Chem. Soc., Dalton Trans. 1999, 639. (d) Shibihara, T. Coord. Chem. Rev. 1993, 123, 73. (e) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95. (c) Adding R. D.; Toei, M. J. Churat, Sci. 1000, 1, 240.

^{1988, 17, 95. (}f) Adams, R. D.; Tasi, M. J. Cluster Sci. 1990, 1, 249.
(13) (a) Adams, R. D.; Captain, B.; Fu, W.; Smith, M. D. J. Am. Chem. Soc. 2002, 124, 5628. (b) Adams, R. D.; Captain, B.; Fu, W.; Pellechia, P. J.; Smith, M. D. Angew. Chem., Int. Ed. **2002**, 41, 1951. (c) Adams, R. D.; Captain, B.; Fu, W.; Pellechia, P. J.; Smith, M. D. Inorg. Chem. **2003**, 42, 2094. (d) Adams, R. D.; Captain, B.; Fu, W.; Smith, M. D. J. Organomet. Chem. 2003, 682, 113.

mixture of open and closed isomers **1a** and **1b** that are in rapid equilibrium on the NMR time scale at room temperature. The palladium compounds Ru₅(CO)₁₅(μ_6 -C)[Pd(PBu^t₃)]_n, where n =1 (**2**), n = 2 (**3**), were also prepared and engaged in similar dynamical processes.^{13b,c} We have shown that Pt(PBu^t₃) and Pd-(PBu^t₃) groups add across Ru–Ru bonds as well as Ru–Pt bonds in the mixed-metal complex PtRu₅(CO)₁₆(μ_6 -C) to afford the adducts PtRu₅(CO)₁₆(μ_6 -C)[M(PBu^t₃)]_n, **4** and **5**, where M = Pt and n = 1 or n = 2, respectively, and **6** and **7**, where M = Pd and n = 1 or n = 2, respectively.^{13d}

In a recent communication we described the reactions of Ru₃-(CO)₁₂, **8**, and Ru₆(CO)₁₇(μ_6 -C), **9**,¹⁴ with Pd(PBu^t₃)₂ which yielded the complexes Ru₃(CO)₁₂[Pd(PBu^t₃)]₃, **10**, and Ru₆-(CO)₁₇(μ_6 -C)[Pd(PBu^t₃)]₂, **11**, respectively, at room temperature. Simple delocalized bonding models were proposed to describe the bonding interactions between the Pd(PBu^t₃) group with the Ru–Ru metal–metal bonds.^{13a} The nature of these bonding interactions have now been investigated by molecular orbital calculations. These results along with details of the synthesis and structural analyses of compounds **10**, **11**, Ru₆(CO)₁₇(μ_6 -C)[Pt(PBu^t₃)]_n, where n = 1 (**12**), n = 2 (**13**), and Ru₆(CO)₁₄-(η^6 -C₆H₆)(μ_6 -C)[Pd(PBu^t₃)]_n, where n = 1 (**15**), n = 2 (**16**), are reported herein.

Experimental Section

General Data. All reactions were performed under a nitrogen atmosphere. Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to use. Infrared spectra were recorded on a Nicolet 5DXBO FT-IR or AVATAR 360 FT-IR spectrophotometer. ¹H NMR and ³¹P NMR were recorded on a Varian Inova 400 spectrometer operating at 399 and 168 MHz, respectively. ³¹P NMR spectra were externally referenced against 85% o-H₃PO₄. Elemental analyses were performed by Desert Analytics (Tucson, AZ). Bis(tri-tert-butyl phosphine)palladium(0), Pd(PBu $_{3}^{t}$)₂, and Ru₃(CO)₁₂, **8**, were purchased from Strem and were used without further purification. $\operatorname{Ru}_6(\operatorname{CO})_{17}(\mu_6-\operatorname{C})$, 9, ¹⁴ $\operatorname{Ru}_6(\operatorname{CO})_{14}(\eta^6-\operatorname{C}_6H_6)(\mu_6-\operatorname{C})$, 14, ¹⁵ and bis(tri-tert-butyl phosphine)platinum(0), Pt(PBut₃)₂¹⁶ were prepared according to the published procedures. Product separations were performed by TLC in air on Analtech 0.25- and 0.5-mm silica gel 60 Å F₂₅₄ glass plates.

Preparation of Ru₃(CO)₁₂[Pd(PBu^t₃)]₃, 10. A 10.3 mg amount of 8 (0.016 mmol) dissolved in 15 mL of CH₂Cl₂ was

allowed to react with 37.0 mg of Pd(PBu^t₃)₂ (0.088 mmol) at 25 °C for 30 min. The solution was concentrated, and 10 mL of hexane was added. Upon cooling to -80 °C, 13.4 mg of blue crystals of Ru₃(CO)₁₂[Pd(PBu^t₃)]₃, **10**, precipitated, 49% yield. Spectral data for **10**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2056 (m), 2004 (vs), 1984 (s, sh), 1948 (s), 1819 (m). ¹H NMR (in CDCl₃): $\delta = 1.43$ ppm (d, 81H, CH₃, ³*J*_{P-H} = 12.3 Hz). ³¹P-{¹H} NMR (in CDCl₃): $\delta = 81.06$ ppm. Anal. Calcd C 36.82, H 5.18. Found C 36.47, H 5.25.

Preparation of Ru₆(**CO**)₁₇(μ₆-**C**)[**Pd**(**PBu**^t₃)]₂, **11.** A 20.0 mg amount of **9** (0.018 mmol) was dissolved in 25 mL of CH₂-Cl₂. To this solution was added 29.3 mg of Pd(PBu^t₃)₂ (0.057 mmol), and the solution then was stirred at 25 °C for 30 min. The product was separated by TLC on silica gel by using 3:1 hexane/methylene chloride solvent mixture to yield 10.3 mg (33%) of Ru₆(CO)₁₇(μ₆-C)[Pd(PBu^t₃)]₂, **11.** Spectral data for **11**: IR ν_{CO} (cm⁻¹ in hexane): 2074 (w), 2046 (m), 2038 (vs), 2025 (m, sh), 2019 (s), 1880 (w, br), 1825 (w, br). ¹H NMR (in CDCl₃): δ = 1.46 ppm (d, CH₃, ³*J*_{P-H} = 12.6 Hz). ³¹P-{¹H} NMR (in CDCl₃): δ = 82.28 ppm. Anal. Calcd C 29.45, H 3.15. Found C 29.71, H 2.99.

Preparation of Ru₆(CO)₁₇(µ₆-C)[Pt(PBu^t₃)], 12, and Ru₆- $(CO)_{17}(\mu_6-C)[Pt(PBu^t_3)]_2$, 13. A 17.7 mg amount of 9 (0.016 mmol) was dissolved in 15 mL of CH₂Cl₂ in a 25-mL threeneck round-bottom flask. To this was added 14.7 mg of Pt- $(PBu_{3}^{t})_{2}$ (0.032 mmol), and the reaction mixture was then stirred at room temperature for 30 min. The solvent was removed in vacuo, and the products were separated by TLC by using a 4:1 hexane/methylenechloride solvent mixture as the developing solvent to yield 3.2 mg (11%) of $Ru_6(CO)_{17}(\mu_6-C)[Pt(PBu_{3}^t)]$, **12**, and 5.8 mg (24%) of $Ru_6(CO)_{17}(\mu_6-C)[Pt(PBu_{3}^t)]_2$, **13**. Spectral data for **12**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2085 (w), 2068 (w), 2049 (vs), 2037 (s). ¹H NMR (in CDCl₃): $\delta = 1.52$ ppm (d, 27H, CH₃, ${}^{3}J_{P-H} = 13$ Hz). ${}^{31}P{}^{1}H{}$ NMR (in CDCl₃): δ = 116.76 ppm (s, 1P, ${}^{1}J_{Pt-P}$ = 6025 Hz). Anal. Calcd C 24.14, H 1.81. Found C 24.06, H 1.70. Spectral data for 13: IR ν_{CO} $(cm^{-1} in CH_2Cl_2)$: 2074 (w), 2060 (w), 2035 (vs), 2014 (s), 1821 (w). ¹H NMR (in CD₂Cl₂): $\delta = 1.48$ ppm (d, 54H, CH₃, ${}^{3}J_{P-H} = 6.4 \text{ Hz}$). ${}^{31}P{}^{1}H} \text{ NMR (in CD_{2}Cl_{2}): } \delta = 117.37 \text{ ppm}$ (s, 1P, ${}^{1}J_{Pt-P} = 5870$ Hz). Anal. Calcd C 26.69, H 2.86. Found C 26.78, H 2.76.

Preparation of $Ru_6(CO)_{14}(\eta^6-C_6H_6)(\mu_6-C)[Pd(PBu^t_3)]$, 15. In 30 mL of CHCl₂ was dissolved 24.0 mg of **14** (0.022 mmol). To this solution over a 10-min period at room temperature was added 11.0 mg (0.022 mmol) of Pd(PBut₃)₂ dissolved in 8 mL of CH₂Cl₂. The solvent was then removed in vacuo, and the products were separated by TLC by using a 6:5 hexane/ methylenechloride solvent mixture as the developing solvent. This yielded 7.5 mg of a brown band and 12.3 mg (51%) of the starting material, 15. The ³¹P{¹H} NMR spectrum of the brown band showed two resonances later assigned to the two products $Ru_6(CO)_{14}(\eta^6-C_6H_6)(\mu_6-C)[Pd(PBu^t_3)]$, 15, and $Ru_6-C_6H_6(PBu^t_3)$ $(CO)_{14}(\eta^6-C_6H_6)(\mu_6-C)[Pd(PBu_3^t)]_2$, **16**. From integration of these two resonances product 15 was obtained in 22% yield (6.6 mg), and product 16 was obtained in 2% yield (0.9 mg). NOTE: Both compounds 15 and 16 have the same R_f value and thus cannot be separated from each other by TLC. Analytically pure compound 15 was obtained by growing crystals by slow evaporation of solvent from a solution of the brown band from a hexane/methylene chloride solvent mixture

⁽¹⁴⁾ Nicholls, J. N.; Vargas, M. D.; Hriljac, J.; Sailor, M. Inorg. Synth. 1989, 26, 283.

⁽¹⁵⁾ Adams R. D.; Wu, W. Polyhedron 1992, 11, 2123.

⁽¹⁶⁾ Otsuka, S.; Yoshida, T.; Matsumoto, M.; Nakatsu, K. J. Am. Chem. Soc. 1976, 98, 5850.

at 5 °C. Spectral data for **15**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2064 (m), 2018 (s), 1990 (w, sh), 1971 (w, sh), 1815(vw, br). ¹H NMR (in CDCl₃): $\delta = 5.30$ ppm (s, 6H, C₆H₆), $\delta = 1.50$ ppm (d, 27H, CH₃, ³*J*_{P-H} = 12 Hz). ³¹P{¹H} NMR (in CDCl₃): $\delta = 79.65$ ppm. Anal. Calcd C 28.36, H 2.36. Found C 28.70, H 2.58.

Preparation of $Ru_6(CO)_{14}(\eta^6-C_6H_6)(\mu_6-C)[Pd(PBu^t_3)]_2$, 16. A 19.0 mg (0.017 mmol) amount of 14 was dissolved in 40 mL of CH₂Cl₂. A 9 mg amount (0.018 mmol) of Pd(PBut₃)₂ was added, and the reaction mixture was stirred at room temperature for 15 min. At this time another equivalent of Pd- $(PBu_{3}^{t})_{2}$ (9 mg) was added to the reaction mixture and allowed to stir for a further 15 min. This addition procedure was repeated two more times at 15-min intervals. At the end of 1 h a total of 36 mg of Pd(PBut₃)₂ had been added. The solvent was then removed in vacuo, and the products were separated by TLC by using a 6:5 hexane/methylenechloride solvent mixture as the developing solvent to yield 13.0 mg of a brown band. A ³¹P-¹H} NMR spectrum of the brown band showed that compound 15 was obtained in 10% yield (2.5 mg) and compound 16 in 35% yield (10.5 mg). Analytically pure 16 was obtained by growing crystals by slow evaporation of solvent from a hexane/ methylene chloride solution of the brown band at 25 °C. Spectral data for 16: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2054 (m), 2042 (w), 2002(s), 1972 (w, sh), 1810 (w, br). ¹H NMR (in CDCl₃): $\delta =$ 5.12 ppm (s, 6H, C₆H₆), $\delta = 1.51$ ppm (d, 27H, CH₃, ${}^{3}J_{P-H} =$ 12 Hz). ³¹P{¹H} NMR (in CDCl₃): $\delta = 81.12$ ppm. Anal. Calcd C 31.65, H 3.52. Found C 31.72, H 3.65.

Crystallographic Analysis. Blue crystals of 10 were obtained by crystallization from a hexane/methylene chloride solution at -80 °C. Dark-red single crystals of 11, 12, 13, and 15 suitable for diffraction analysis were grown by slow evaporation of solvent from solutions of the pure compound in hexane/ methylene chloride solvent mixture at 5 °C. Dark-red single crystals of 16 were grown similarly by evaporation of solvent from a hexane/methylene chloride solvent mixture at 25 °C. Each data crystal was glued onto the end of a thin glass fiber. X-ray intensity data were measured using a Bruker SMART APEX CCD-based diffractometer using Mo K α radiation ($\lambda =$ 0.71073 Å). The raw data frames were integrated with the SAINT+ program using a narrow-frame integration algorithm.¹⁷ Correction for the Lorentz and polarization effects were also applied by using the program SAINT. An empirical absorption correction based on the multiple measurement of equivalent reflections was applied by using the program SADABS. All structures were solved by a combination of direct methods and difference Fourier syntheses and were and refined by full-matrix least-squares on F^2 , by using the SHELXTL software package.¹⁸ All nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in geometrically idealized positions and included as standard riding atoms during least-squares refinements. Crystal data, data collection parameters, and results of the analyses for compounds 10 and 11 are listed in Table 1, for compounds 12 and 13 in Table 2, and for compounds 15 and 16 in Table 3.

Compounds 10, 13, and 16 crystallized in the monoclinic crystal system. The space groups $P2_1/c$ (for compounds 10 and

Table 1. Crystallographic E	Data for Compounds 10) and 1
-----------------------------	-----------------------	----------------

	10	11
empirical formula	Pd ₃ Ru ₃ P ₃ O ₁₂ C ₄₈ H ₈₁	Pd2Ru6P2O17C42H54
formula weight	1565.45	1712.01
crystal system	monoclinic	orthorhombic
lattice parameters		
a (Å)	24.663(2)	15.1983 (11)
<i>b</i> (Å)	14.9128 (13)	19.7491 (15)
c (Å)	16.4277 (14)	35.841 (3)
α (deg)	90	90
β (deg)	91.909 (2)	90
γ (deg)	90	90
$V(Å^3)$	6038.6 (9)	10757.8 (14)
space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$
Z value	4	8
$\rho_{\rm calc} ({\rm g/cm^3})$	1.722	2.114
μ (Mo K α) (mm ⁻¹)	1.737	2.413
<i>T</i> (K)	190	190
$2\Theta_{\text{max}}$ (°)	46.62	52.8
no. obs. $(I > 2\sigma(I))$	4571	20374
no. parameters	648	1279
goodness of fit	0.986	0.951
max shift in cycle	0.000	0.003
residuals: R1; wR2 ^a	0.0437; 0.0759	0.0296; 0.0559
absorption correction,	none	SADABS
max/min		0.74; 0.48
largest peak in	0.705	0.791
final diff. map (e ⁻ /Å ³)		

 ${}^{a}R = \sum_{hkl} (||F_{obs}| - |F_{calc}||) / \sum_{hkl} |F_{obs}|; R_{w} = [\sum_{hkl} w(|F_{obs}| - |F_{calc}|)^{2/} / \sum_{hkl} wF_{obs}^{-2}]^{1/2}, w = 1/\sigma^{2}(F_{obs}); \text{ GOF} = [\sum_{hkl} w(|F_{obs}| - |F_{calc}|)^{2/} / (n_{data} - n_{vari})]^{1/2}.$

Table 2. Crystallographic Data for Compounds 12 and 13

	12	13
empirical formula	PtRu6PO17C30H27	Pt2Ru6P2O17C42H54
formula weight	1492.00	1889.39
crystal system	orthorhombic	monoclinic
lattice parameters		
a (Å)	12.2489 (5)	18.1870 (5)
b (Å)	19.8587 (8)	19.6886 (6)
<i>c</i> (Å)	16.4570 (6)	31.1190 (9)
α (deg)	90	90
β (deg)	90	95.0310 (10)
γ (deg)	90	90
$V(Å^3)$	4003.1 (3)	11100.1 (6)
space group	$Pna2_1$	$P2_{1}/c$
Z value	4	8
$\rho_{\rm calc} ({\rm g/cm^3})$	2.476	2.261
μ (Mo K α) (mm ⁻¹)	5.792	6.726
<i>T</i> (K)	293	293
$2\Theta_{\max}$ (°)	52.5	50.1
no. obs. $(I > 2\sigma(I))$	7207	13429
no. parameters	506	1279
goodness of fit	1.035	0.964
max shift in cycle	0.002	0.002
residuals: R1; wR2 ^a	0.0351; 0.0590	0.0435; 0.0669
absorption correction,	SADABS	SADABS
max/min	1.00; 0.86	1.00; 0.76
largest peak in	0.703	1.085
final diff. map (e ⁻ /Å ³)		

^{*a*} $R = \sum_{hkl} (||F_{obs}| - |F_{calc}||) / \sum_{hkl} |F_{obs}|; R_w = [\sum_{hkl} w (|F_{obs}| - |F_{calc}|)^2 / \sum_{hkl} w F_{obs}^{2}]^{1/2}, w = 1/\sigma^2 (F_{obs}); \text{ GOF} = [\sum_{hkl} w (|F_{obs}| - |F_{calc}|)^2 / (n_{data} - n_{vari})]^{1/2}.$

13) and $P2_1/n$ (for compound 16) were identified uniquely on the basis of the systematic absences observed during the collection of the intensity data. For compound 13 there are two independent formula equivalents of the complex present in the asymmetric unit. Compounds 11 and 12 crystallized in the

⁽¹⁷⁾ SAINT+, version 6.02a; Bruker Analytical X-ray System, Inc., Madison, Wisconsin, 1998.

⁽¹⁸⁾ Sheldrick, G. M. SHELXTL, version 5.1; Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, 1997.

Table 3. Crystallographic Data for Compounds 15 and 16

	15	16
empirical formula	PdRu ₆ PO ₁₄ C ₃₃ H ₃₃	Pd2Ru6P2O14C45H60
formula weight	1397.38	1706.09
crystal system	triclinic	monoclinic
lattice parameters		
a (Å)	8.9793 (9)	15.2586 (6)
<i>b</i> (Å)	13.7655 (14)	16.2472 (6)
<i>c</i> (Å)	17.1762 (18)	22.7817 (9)
α (deg)	77.464(2)	90
β (deg)	88.967(2)	102.8920 (10)
γ (deg)	81.998(2)	90
$V(Å^3)$	2052.1 (4)	5505.4 (4)
space group	$P\overline{1}$	$P2_1/n$
Z value	2	4
$\rho_{\rm calc}$ (g/cm ³)	2.261	2.058
μ (Mo K α) (mm ⁻¹)	2.677	2.353
<i>T</i> (K)	293	293
$2\Theta_{\rm max}$ (deg)	52.0	52.0
no. obs. $(I > 2\sigma(I))$	6010	7747
no. parameters	505	640
goodness of fit	1.060	1.002
max shift in cycle	0.002	0.002
residuals: R1; wR2 ^a	0.0496; 0.1061	0.0462; 0.0937
absorption correction,	SADABS	SADABS
max/min	1.00; 0.81	1.00; 0.85
largest peak in	0.957	0.832
final diff. map (e ⁻ /Å ³)		

^{*a*} $R = \sum_{hkl} (||F_{obs}| - |F_{calc}||) / \sum_{hkl} |F_{obs}|; R_w = [\sum_{hkl} w(|F_{obs}| - |F_{calc}|)^2 / \sum_{hkl} wF_{obs}^{2}]^{1/2}, w = 1/\sigma^2 (F_{obs}); \text{ GOF} = [\sum_{hkl} w(|F_{obs}| - |F_{calc}|)^2 / (n_{data} - n_{vari})]^{1/2}.$

orthorhombic crystal system. The space group $P2_12_12_1$ was identified uniquely on the basis of the systematic absences observed during the collection of the intensity data for compounds **11**. For compound **12** the space groups $Pna2_1$ and Pnma were indicated by the systematic absences in the data. The former space group was assumed and confirmed by the solution and refinement of the structure. For compound **11** there are two independent formula equivalents of the complex present in the asymmetric unit. Compound **15** crystallized in the triclinic crystal system. The space group $P\overline{1}$ was assumed and confirmed by the successful solution and refinement of the structure.

Molecular Orbital Calculations. All molecular orbital calculations reported here are from the Fenske–Hall method.¹⁹ Fenske–Hall calculations were performed utilizing a graphical user interface developed²⁰ to build inputs and view outputs from stand-alone Fenkse–Hall (version 5.2) and MOPLOT2²¹ binary executables. Contracted double- ζ basis sets were used for the Ru and Pd 4d, P 3p, and C and O 2p atomic orbitals. The Fenske–Hall scheme is a nonempirical, approximate method that is capable of calculating molecular orbitals for very large transition metal systems and has built-in fragment analysis routines that allow one to assemble transition metal cluster structures from the corresponding ligated fragments.

Results and Discussion

Because of the great steric bulk of tri-*tert*-butylphosphine, the compounds $M(PBut_3)_2$, M = Pd and Pt, are air stable even

Figure 1. ORTEP diagram of Ru₃(CO)₁₂[Pd(PBu⁴₃)]₃, **10**, showing thermal ellipsoids at 50% probability. The methyl groups have been omitted for clarity.

Table 4. Selected Intramolecular Distances and Angles for $Ru_3(CO)_{12}[Pd(PBu^t_3)]_3$, **10**^a

(a) Distances									
atom	ato	m	distance (Å)	atom	ato	m	distance (Å)		
Ru(1)	Pd(1)	2.7877(12)	Ru(3)	Pd((2)	2.8310(12)		
Ru(1)	Pd(3)	2.7962(12)	Ru(3)	Pd((3)	2.8050(12)		
Ru(1)	Ru((2)	2.9191(12)	Pd(1)	P(1)	2.365(3)		
Ru(1)	Ru((3)	2.9418(12)	Pd(2)	P(2)	2.366(3)		
Ru(2)	Pd(1)	2.8398(11)	Pd(3)	P(3)	2.369(3)		
Ru(2)	Pd(2)	2.7928(12)	O(av)	C(a	iv)	1.166(12)		
Ru(2)	Ru((3)	2.9690(12)						
(b) Angles									
atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)		
Pd(1)	Ru(1)	Pd(3)	144.56(4)	Pd(3)	Ru(1)	Ru(2)	117.22(4)		
Pd(1)	Ru(1)	Ru(2)	59.63(3)	Pd(3)	Ru(1)	Ru(3)	58.46(3)		
Pd(1)	Ru(1)	Ru(3)	116.18(4)	Ru(2)	Ru(1)	Ru(3)	60.87(3)		

though they have only two phosphine ligands. The reaction of $Ru_3(CO)_{12}$ with an excess of $Pd(PBut_3)_2$ at room temperature afforded the tripalladium complex $Ru_3(CO)_{12}[Pd(PBut_3)]_3$, **10**, in 49% yield, eq 1.

Compound **10** was characterized by a combination of IR, ¹Hand ³¹P NMR, and single-crystal X-ray diffraction analyses. An ORTEP diagram of the molecular structure of **10** is shown in Figure 1. Selected bond distances and angles are listed in Table 4. The compound has a "raft-like" structure with a triangular Ru₃ unit in the center. Each edge of the Ru₃ group is bridged by a Pd(PBu^t₃) group. The six-metal cluster is not planar, and each Pd atom is displaced by 0.6964(16)-0.9866(15) Å out of the Ru₃ plane to the same side. Each ruthenium atom contains three linear terminal CO ligands plus one CO ligand that forms a bridge to a palladium atom. Because there was no loss of a

⁽¹⁹⁾ Hall, M. B.; Fenske, R. F. *Inorg. Chem.* 1972, *11*, 768–775.
(20) Manson, J.; Webster, C. E.; Hall, M. B. JIMP Development Version 0.1

⁽²⁰⁾ Manson, J.; Webster, C. E.; Hall, M. B. JIMP Development Version 0.1 (built for Windows PC and Redhat Linux); Department of Chemistry, Texas A&M University, College Station, TX 77842 (http://www.chem.tamu.edu/ jimp/).

⁽²¹⁾ MOPLOT2: for orbital and density plots from linear combinations of Slater or Gaussian type orbitals, version 2.0, June 1993; Dennis L. Lichtenberger, Department of Chemistry, University of Arizona, Tucson, AZ 85721.

Scheme 1

HOMO "dz²" LUMO "sp"

CO ligand from **8**, compound **10** can be viewed most simply as a tris-Pd(PBu^t₃) adduct of it with the Pd(PBu^t₃) groups being generated from Pd(PBu^t₃)₂ by the loss of one of its PBu^t₃ ligands. The Ru–Ru bonds, Ru(1)–Ru(2) = 2.9191(12) Å, Ru(1)–Ru-(3) = 2.9418(12) Å, Ru(2)–Ru(3) = 2.9690(12) Å, are slightly longer than those in Ru₃(CO)₁₂, 2.854(1) Å,^{22a} but are similar to the hydride-bridged Ru–Ru bond distances found in H₂Ru₄-(CO)₁₃, 2.936(1)–2.955(1) Å.^{22b}

A simple model for the bonding of the palladium atoms to the Ru–Ru bonds can be constructed as follows: the Pd(PBu^t₃) fragment contains only 12 valence electrons and will be a strong Lewis acid. If two electrons from a Ru–Ru bond are shared with the proximate Pd atom, then a 3-center/2-electron PdRu₂ bond would be formed, and the electron count at the palladium atom would be increased formally to 14, as it was in the parent Pd(PBu^t₃)₂ (see model A).

This is conceptually similar to the well-known protonation of the metal-metal bonds of polynuclear metal complexes that occurs in strong protic media.²³

The Pd-Ru interactions in **10** are, however, more complex than this simple model and include additional stablization by bonding to a bridging carbonyl ligand which was included in the refined Fenske-Hall molecular orbital model described as follows. The entire molecule can be viewed as an assembly of three Ru(CO)₄ units and three Pd(PR₃) units, but it is not obvious why the dimer of trimers is distorted to a C_3 -like structure rather than having a higher symmetry D_3 -like structure. The bridging CO was assigned to Ru because its σ -donor orbital was directed more toward Ru than Pd. The key low-lying orbitals are shown diagrammatically in Scheme 1. The Ru(CO)₄ appears most like

ARTICLES

Figure 2. Fragment molecular orbitals that produce the 3-center/2-electron bonds (one of three by symmetry), which constitute the principal metal-to-metal bonding interactions of $Ru_3(CO)_{12}[Pd(PBu'_3)]_3$.

a trigonal bipyramid with a missing ligand. As this neutral fragment would have a d⁸ configuration, the highest-occupied molecular orbital (HOMO) is the d_{xz} , the d orbital that would have been stabilized by the missing CO in the fully ligated Ru-(CO)₅ molecule (see Scheme 1). The lowest-unoccupied molecular orbital (LUMO) is the "dsp3" hybrid that would have been destabilized by accepting the fifth CO's lone pair (see Scheme 1). The last orbital of importance on the $Ru(CO)_4$ fragment is the low-lying π^* orbital on the distorted CO (LUMO+1). This distortion (a Ru–C–O angle of \sim 140° rather than 180°) arises from the clockwise (or counterclockwise) twisting of each Ru(CO)₄ unit to place one CO closer to each Pd. The distortion lowers the energy of this LUMO+1 orbital because it is now less effective in back-bonding to the Ru. We will return to the origin of this twisting and subsequent distortion later after describing the bonding in the structure as found. The key orbitals of the Pd(PR₃) fragment are somewhat simpler (see Scheme 1). The HOMO is the z^2 , the d orbital pointing away from the only ligand in this d¹⁰ fragment, while the LUMO is the "sp" hybrid pointing in the same direction.

When three Ru(CO)₄ and three Pd(PR₃) fragments assemble into the cluster, the principal metal—metal bonding arises from the HOMO of one Ru donating electron density into both the LUMO on the Pd opposite the bridging CO and the LUMO of the Ru on the first Ru's other side. Three of these 3-center/2electron bonds constitute the principal metal-to-metal bonding molecular orbitals; one of these interactions is shown in Figure 2, which shows the actual fragment MOs from the Fenske— Hall calculation. Here, the same fragment orbitals as shown diagrammatically in Scheme 1 are shown in their correct relationship to each other. An important secondary interaction is shown in Figure 3, where the HOMO of the Pd(PR₃) fragment (in particular the "donut" of the d_z²) donates electron density to the LUMO+1 of the Ru(CO)₄, the π^* orbital of the semibridging CO.

Now, one may wonder why the Ru(CO)₄ distorts such that the secondary interaction described above is unsymmetrical. In a more symmetrical structure the CO's on both sides of the Ru could accept electron density from the Pd HOMO. Therefore, the distortion most likely has another origin, i.e., the bent Ru– C–O structure and the subsequent "one-side" Pd to CO(Ru) back-bonding is a response to the distortion and not the driving force.

 ^{(22) (}a) Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655. (b) Rheingold, A. L.; Haggerty, B. S.; Geoffroy, G. L.; Han, S.-H. J. Organomet. Chem. 1990, 384, 209.

^{(23) (}a) Nataro, Č.; Thomas, L. M.; Angelici, R. J. *Inorg. Chem.* **1997**, *36*, 6000.
(b) Kristjansdottir, S. S.; Moody, A. E.; Weberg, R. T.; Norton, J. R. *Organometallics* **1988**, *7*, 1983. (c) Wlaker, H. W.; Pearson, R. G.; Ford, P. C. J. Am. Chem. Soc. **1983**, *105*, 1179. (d) Deeming, A. J.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc. (A) **1970**, 2967. (e) Knight, J.; Mays, M. J J. Chem. Soc. (A) **1970**, 711.

Figure 3. Pd(PR₃) fragment HOMO that donates electron density to the LUMO+1 of the Ru(CO)₄ fragment, primarily a π^* orbital of the semibridging CO.

The driving force for the distortion arises from a secondorder Jahn–Teller(JT) effect,²⁴ because in a high-symmetry point group, such as D_{3h} or C_{3v} , the irreducible representations of symmetry-adapted linear combinations of the Ru(CO)₄

Figure 4. HOMO of the Ru₃(CO)₁₂[Pd(PBu^t₃)]₃ cluster.

HOMOs have an incomplete correspondence to irreducible representations of the symmetry adapted LUMOs of the neighboring fragments. Thus, the Ru(CO)₄ twists to reduce the symmetry and maximize its interaction with its neighbors. A complete analysis of the second-order JT effect is illustrated in Scheme 2. For the purpose of this analysis, the molecular electronic structure will be represented simply by two triangular metal clusters, one with three Ru fragments and one larger triangle, rotated 60°, with three Pd fragments. For the main metal-to-metal bonding there are three donor orbitals on the Ru (Ru^{HOMO}) and six acceptor orbitals, three on Ru (Ru^{LUMO}) and three on Pd (Pd^{LUMO}). In the highest possible local symmetry, D_{3h} , the Ru₃^{LUMO} and Pd₃^{LUMO} orbitals transform as $\mathbf{a_1}'$ and \mathbf{e}' , as shown at the top of Scheme 2. These two sets of LUMOs interact with each other (as shown by the orbital interaction diagram at the top of Scheme 2) to form in-phase, lower-lying combinations and out-of-phase higher-lying combinations. Thus, one now has a set of strong acceptor orbitals involving all six metal atoms that transform as a_1' , e', and $a_1'^*$ (the Ru₃Pd₃^{LUMO} orbitals shown in Scheme 2). The primary metal-to-metal bonding occurs when these Ru₃Pd₃^{LUMO} orbitals accept electron density from the Ru₃^{HOMO} orbitals. The symmetry-adapted linear combinations of the latter orbitals are shown interacting with the $Ru_3Pd_3^{LUMO}$ set in the center of Scheme 2. However, since the Ru_3^{HOMO} set transforms as a_2' and \mathbf{e}' , not $\mathbf{a_1}'$ and \mathbf{e}' , there is a symmetry mismatch in D_{3h} or C_{3v} (**a**₂, **a**₁, and **e**) point groups. Thus, all three pairs of electrons from the Ru_3^{HOMO} set cannot be used for bonding in a highsymmetry situation. This dilemma is illustrated in the second orbital interaction diagram in Scheme 2, which shows a suitable bonding $Ru_3Pd_3^{INT}$ interaction for the **e**' arising from the **e**' of the Ru_3^{HOMO} donating to the **e**' of the $Ru_3Pd_3^{LUMO}$. However, in this high-symmetry both the occupied Ru_3^{HOMO} **a**₂' and the unoccupied $Ru_3Pd_3^{LUMO} a_1'$ and $a_1'^*$ must remain nonbonding as the energy diagram shows and as is illustrated in the linear combination $\mathbf{a_1}' + \mathbf{a_2}' + \mathbf{a_1}'^*$, where one can see that the $\mathbf{a_2}'$ combination has zero overlap by symmetry with a_1' and $a_1'^*$. The dilemma can be resolved by twisting the $Ru(CO)_4$ so that the symmetry drops to the C_3 point group and the $\mathbf{a_1}'$ and $\mathbf{a_2}'$ both become **a** in $Ru_3Pd_3^{FINAL}$ and their mutual interaction will stabilize the occupied combination as shown at the bottom of Scheme 2; the HOMO for $Ru_3Pd_3^{FINAL}$ is shown in Figure 4.

An analysis of the overlap populations both among the fragments and between individual metal atoms suggests that there are direct Ru-Ru bonds and direct Ru-Pd bonds along

⁽²⁴⁾ The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry; Bersuker, I. B., Ed.; Plenum Press: New York, 1984. Orbital Interactions in Chemistry; Albright, T. A., Berdett, J. K., Whangbo, M. W., Eds.; John Wiley and Sons: New York, 1985; pp 95–100; Symmetry Rules for Chemical Reactions: Orbital Topology and Elementary Processes; Pearson, R. G., Ed.; John Wiley and Sons: New York, 1976; pp 75–82.

Table 5. Selected Intramolecular Distances and Angles for Ru_6(CO)_{17}(\mu_6\text{-C})[Pd(PBu^t_3)]_2, 11^a

		(a) Dis	stances		
atom	atom	distance (Å)	atom	atom	distance (Å)
Pd(1)	P(1)	2.4276(14)	Ru(1)	Ru(5)	2.8656(6)
Pd(1)	Ru(2)	2.7790(6)	Ru(2)	Ru(3)	2.9749(6)
Pd(1)	Ru(3)	2.8319(6)	Ru(2)	Ru(5)	2.8590(6)
Pd(2)	P(2)	2.4350(13)	Ru(2)	Ru(6)	2.8619(6)
Pd(2)	Ru(5)	2.8453(6)	Ru(3)	Ru(4)	2.8643(6)
Pd(2)	Ru(6)	2.8011(6)	Ru(3)	Ru(6)	2.8584(6)
Pd(3)	P(3)	2.4343(14)	Ru(4)	Ru(5)	2.9588(6)
Pd(3)	Ru(7)	2.7806(6)	Ru(4)	Ru(6)	2.9363(6)
Pd(3)	Ru(9)	2.8423(6)	Ru(5)	Ru(6)	2.9936(6)
Pd(4)	P(4)	2.3943(14)	Ru(1)	C(1)	2.067(5)
Pd(4)	Ru(10)	2.8050(6)	Ru(2)	C(1)	2.046(5)
Pd(4)	Ru(11)	3.0531(6)	Ru(3)	C(1)	2.063(5)
Pd(4)	Ru(12)	2.8828(6)	Ru(4)	C(1)	2.069(5)
Ru(1)	Ru(2)	3.0066(6)	Ru(5)	C(1)	2.065(5)
Ru(1)	Ru(3)	2.9482(6)	Ru(6)	C(1)	2.056(5)
Ru(1)	Ru(4)	2.8429(6)	O(av)	C(av)	1.15(1)
		(b) A	ngles		
atom	atom atom	angle (deg)	atom ato	m atom	angle (deg)
-					

atom	utom	atom	ungie (ueg)	atom	atom	atom	ungie (ueg)
Ru(2)	Pd(1)	Ru(3)	64.030(15)	Ru(11)	Pd(4)	Ru(12)	59.287(15)
Ru(5)	Pd(2)	Ru(6)	64.029(15)	Ru(1)	Ru(2)	Ru(6)	89.198(16)
Ru(7)	Pd(3)	Ru(9)	64.431(15)	Ru(1)	Ru(3)	Ru(6)	90.431(17)
Ru(10)	Pd(4)	Ru(12)	65.830(16)	Ru(1)	C(1)	Ru(6)	177.4(3)
Ru(10)	Pd(4)	Ru(11)	59.756(15)	Ru(3)	C(1)	Ru(5)	178.7(3)

 $^{\it a}$ Estimated standard deviations in the least significant figure are given in parentheses.

the unbridged edges. However, along the CO-bridged Ru–Pd edge, there is significantly less direct Ru–Pd bonding,²⁵ but strong Ru–C(O)–Pd bonding. Thus, the single-best valence representation, which is constructed from both the orbital and overlap population analysis, is shown in Scheme 3.

The dipalladium complex Ru₆(CO)₁₇(μ_6 -C)[Pd(PBu^t₃)]₂, **11**, was formed in 33% yield from the reaction of Ru₆(CO)₁₇(μ_6 -C), **9**, with Pd(PBu^t₃)₂ at room temperature. Compound **11** was characterized by a combination of IR, ¹H- and ³¹P NMR, and single-crystal X-ray diffraction analyses. Selected bond distances and angles are listed in Table 5. The structure of **11** consists of an octahedral cluster of six ruthenium metal atoms with a carbon atom in the center, and two Pd(PBu^t₃) groups coordinated to it. In the solid-state compound **11** exists as two isomers, and both isomers can be viewed as bis-Pd(PBu^t₃) adducts of Ru₆(CO)₁₇-(μ_6 -C) as there was no loss of CO from the Ru₆ starting material. In one isomer the Pd(PBu^t₃) groups bridge two edges, Ru(2)–Ru(3) and Ru(5)–Ru(6), of the Ru₆ octahedron, see Figure 5. In the other isomer, Figure 6, one Pd(PBu^t₃) group bridges the Ru(7)–Ru(9) edge of the Ru₆ octahedron, while the other Pd-

Figure 5. ORTEP diagram of the molecular structure of $Ru_6(CO)_{17}(\mu_6-C)[Pd(PBu^t_3)]_2$, **11**, showing thermal ellipsoids at 40% probability.

Figure 6. ORTEP diagram of the molecular structure of $Ru_6(CO)_{17}(\mu_6-C)[Pd(PBu^t_3)]_2$, **11**, isomer 2 showing thermal ellipsoids at 40% probability.

Scheme 4

(PBu^t₃) group serves as a triple bridge capping the Ru(10)– Ru(11)–Ru(12) triangle with the Pd(4)–Ru(11) bond distance of 3.0531 Å being the longest. The Ru–Ru bond distances in the Ru₆ cluster are similar to those found in the parent compound.²⁶ Carbonyl ligands bridge from the Ru₆ cluster to the palladium atoms in both isomers.

⁽²⁵⁾ Bridging carbonyls can reduce direct M-M bonding character. Summerville, R. H.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3921. Macchi, P.; Sironi, A. Coord. Chem. Rev. 2003, 238, 383.

⁽²⁶⁾ Braga, D.; Grepioni, F.; Dyson, P. J.; Johnson, B. F. G.; Frediani, P.; Bianchi, M.; Piacenti, F. J. Chem. Soc., Dalton Trans. 1992, 2565.

Molecular orbital calculations have also been performed for compound **11** and are described as follows. One can envision this Ru₆C(CO)₁₇[Pd(PR₃)]₂ cluster (see Scheme 4) being assembled from one central C atom, two sets of two Ru(CO)₃ fragments (forming axial (Ru_{ax}) and equatorial (Ru_{eq}) [Ru-(CO)₃]₂ units), two Ru(CO)₂ fragments (Ru_{br}) bridged by one "extra" CO (forming a (μ -CO)[Ru_{br}(CO)₂]₂ unit), and two Pd-(PR₃) fragments. (In the text, orbitals from Ru_{ax}, Ru_{eq}, and Ru_{br}

fragments will be designated with an appropriate suffix, e.g., **1a**-eq for the **1a** orbital of $[Ru_{eq}(CO)_3]_2$.) The key low-lying orbitals for Ru(CO)₃, Ru(CO)₂, Pd(PR₃) units are illustrated in Schemes 1 and 5. In the neutral, d⁸ Ru(CO)₃ fragment (Schemes 5 and 6), the d orbitals from two sets that reflect the character of their octahedral parentage: (1) three occupied orbitals (**1a**₁ and **1e**) are stabilized by the carbonyl π^* like the parent octahedral t_{2g} set and (2) the **2e** orbitals with 2 e– are

Scheme 5

destabilized by the carbonyl σ like the parent octahedral e_g set. Removing one CO from the Ru(CO)₃ fragment generates the d⁸ Ru(CO)₂ fragment, (Schemes 5 and 6) whose five orbitals with t_{2g} and e_g parentage are three low-lying orbitals (**1a**₁: mostly d_z²; **1b**₁:d_{xz}; **1a**₂:d_{xy}), the HOMO (**2a**₁, mostly d_x²-_y²), and the LUMO (**1b**₂:d_{yz}). The **2e** set for Ru(CO)₃ and the **1b**₂ set for Ru(CO)₂ have some p character, which is not shown in the orbital fragments is as follows: **1a**₁, **1e**_{d_z²-_y², **1e**_{d_{xy}}, **2e**_{d_{xz}, and **2e**_{d_{yz} for Ru(CO)₃ correspond to **1b**₁, **1a**₁, **1a**₂, **2a**₁, and **1b**₂ of Ru(CO)₂, respectively. The key orbital of the d¹⁰ Pd(PR₃) fragment is the previously mentioned LUMO, the "sp" hybrid (see Scheme 1).}}}

One may build up the complex by combining fragments sequentially. Using the extra CO to bridge the two Ru(CO)₂ units affords a $(\mu$ -CO)[Ru_{br}(CO)₂]₂ fragment (see Scheme 7). This combination of fragments produces eight key orbitals, **2a**-br, **1b**-br, **2b**-br, **3b**-br, **4a**-br, **5a**-br, **5b**-br, and **6a**-br (see

5260 J. AM. CHEM. SOC.
VOL. 126, NO. 16, 2004

Scheme 8; note that idealized, higher-symmetry fragments are used for the orbital representations of $(\mu$ -CO)[Ru_{br}(CO)₂]₂, and contributions from the bridging CO, which is along the *z*-axis, are not shown). The Ru(CO)₃ fragments can be assembled as two sets of two. The two Ru(CO)₃ fragments that are opposite the two Ru_{br} of the $(\mu$ -CO)[Ru_{br}(CO)₂]₂ fragment combine to produce the equatorial fragment, [Ru_{eq}(CO)₃]₂, and the two remaining Ru(CO)₃ fragments combine to produce the axial fragment, [Ru_{ax}(CO)₃]₂. The molecular orbital diagrams for these two bis Ru(CO)₃ fragments are represented in Scheme 9, and the important orbitals from each one are represented in Schemes 10 and 11 (again, idealized, higher-symmetry fragments are used for the orbital representations of [Ru_{eq}(CO)₃]₂ and [Ru_{ax}(CO)₃]₂).

These two sets of $[Ru(CO)_3]_2$ fragments, the $(\mu$ -CO) $[Ru_{br}$ -(CO)₂]₂ unit, and one C atom combine to form the core Ru_6C -

Scheme 8

 $(CO)_{17}$ unit, which has seven orbitals important to cluster bonding in accord with electron-counting rules²⁷ (see Scheme 12 and Figure 7): one 7-center/2-electron (7c/2e-) bond containing central C s-character (1a) bonding to all Ru, one 5c/2e bond (with four Ru) and two 7c/2e bonds (with all Ru) containing central C p-character (1b, 2a, and 2b), two 6c/ 2e- bonds (3a and 3b with all Ru), and one 2c/2e- bond (4a with the two Ru_{eq}). The **1a** orbital of $Ru_6C(CO)_{17}$ is formed by a combination of **1a**-br from $(\mu$ -CO)[Ru_{br}(CO)₂]₂, **1a**-eq and 2a-eq (2a-eq is not pictured) from [Ru_{eq}(CO)₃]₂, and 1a-ax and **2a**-ax (not pictured) from $[Ru_{ax}(CO)_3]_2$ with the central C s orbital. The **1b** orbital is formed by a combination of **1b**-br, **2b**-br, **1b**-eq, **2b**-eq, and **2b**-ax with the central C p_x and p_y orbitals. The 2a orbital is formed by a combination of 1a-eq, **1a**-ax, and **3a**-ax with the central C p_z orbital. The **2b** orbital is formed by a combination of 3b-br, 1b-br, 2b-eq, 1b-ax, and **3b**-ax with the central C p_x and p_y orbitals. The **3a** orbital is formed by a combination of 6a-br, 4a-br, 5a-eq, 4a-ax, and 5aax. The 3b orbital is formed by a combination of 5b-br, 4b-eq, and 4b-ax. The HOMO of $Ru_6C(CO)_{17}$ (4a) has mainly 4a-eq character, which is a Ru-Ru metal-metal bond, and a small amount of **5a**-br character. The LUMO of $Ru_6C(CO)_{17}$ (**5a**) is mainly a combination of 5a-br and 5a-ax character with a small amount of 4a-eq character.

Combining the Ru₆C(CO)₁₇ unit and two Pd(PR₃) fragments to complete the assembly of the cluster yields a donor-acceptor description for these principal bonding interactions. The two Pd(PR₃) acceptor orbitals combine to form two nearly degenerate orbitals, the LUMO (**b**) and LUMO+1 (**a**) of the [Pd(PR₃)]₂ unit. These two orbitals accept electrons from the **3b** and **3a** of the Ru₆C(CO)₁₇ unit (see Scheme 13 and Figure 7).

An analysis of the overlap populations both among the fragments and between individual metal atoms suggests that (1) there is strong Ru-C bonding between the six Ru and the central C atom of the octahedron; (2) there is direct Ru-Ru bonding

 $[\operatorname{Ru}_{ax}(\operatorname{CO})_3]_2 \ 2 \operatorname{Ru}(\operatorname{CO})_3 \ [\operatorname{Ru}_{eq}(\operatorname{CO})_3]_2$

between adjacent Ru, except for the two Ru of the (μ -CO)-[Ru_{br}(CO)₂]₂ unit, which do not have a direct Ru–Ru bond because of the symmetrically bridging CO²⁸ and where the strongest Ru–Ru interaction is between the two Ru_{eq} that are opposite the two-carbonyl-bridged Ru (of the (μ -CO)[Ru_{br}-(CO)₂]₂ unit); and (3) there are direct Ru–Pd interactions as well as strong Ru–C(O)–Pd bonding where the direct metalmetal bonds are supported by "linear" semibridging CO's.²⁷ Thus, the single-best valence representation, which is constructed from both the orbital and overlap population analysis, is shown in Scheme 14 (terminal CO's not represented), where the lines indicate significant bonding but not necessarily a classical 2c/2e– bond.

Pt(PBu^t₃)₂ reacts similarly with **9** to yield the diplatinum complex Ru₆(CO)₁₇(μ_6 -C)[Pt(PBu^t₃)]₂, **13**, in 24% yield; in addition a monoplatinum complex, Ru₆(CO)₁₇(μ_6 -C)[Pt(PBu^t₃)], **12**, was also obtained in 11% yield, eq 2.

Both compounds were characterized by IR, ¹H- and ³¹P NMR and single-crystal X-ray diffraction analyses. Selected bond distances and angles for compounds **12** and **13** are given in Tables 6 and 7, respectively. Compound **12** consists of an Ru₆ octahedron with a carbon atom in the center. The Pt(PBu^t₃) group is bonded to three ruthenium atoms, forming a cap on the Ru(2)-Ru(3)-Ru(6) triangle, see Figure 8. Once again there was no loss of CO from **9**, and thus the compound can be viewed as a mono-Pt(PBu^t₃) adduct of Ru₆(CO)₁₇(μ ₆-C). The Ru-Pt bond distances to the triply bridging Pt(PBu^t₃) group lie in the range 2.8834(9)-2.9314(6) Å and are similar to those found in the triply bridging isomer of **11**: 2.8050(6)-3.0531(6) Å.

Like compound **11**, compound **13** also has two independent molecules in the asymmetric unit in its crystal structure. However, in this case both molecules are structurally similar with two $Pt(PBut_3)$ groups bridging two Ru-Ru bonds, making

Scheme 10

The Pt-Ru distances lie in the range 2.7498(8)-2.8727(8) Å and are similar to the Pd-Ru distances found in **11**: 2.7790-(6)-2.8423(6) Å.

The reaction of the benzene-coordinated Ru₆ carbonyl cluster, Ru₆(CO)₁₄(η^{6} -C₆H₆)(μ_{6} -C), **14**, with Pd(PBu^t₃)₂ at room temperature yielded mono- and dipalladium complexes Ru₆(CO)₁₄(η^{6} -C₆H₆)(μ_{6} -C)[Pd(PBu^t₃)]_n where n = 1 (**15**), n = 2 (**16**), eq 3.

them analogous to the isomer of **11** which has Pd(PBu^t₃) groups bridging two Ru–Ru bonds, see Figure 9. Each Pt–Ru bond has a bridging CO ligand. The molecule has C_2 symmetry, with the two-fold axis running through the Ru(1)–Ru(4)–Ru(6)– Ru(2) plane and the bridging CO ligand on Ru(1) and Ru(4).

Both compounds were characterized by IR, ¹H- and ³¹P NMR and single-crystal X-ray diffraction analyses. Selected bond distances and angles for compounds **15** and **16** are given in

Figure 7. Seven orbitals important to cluster bonding for the core $Ru_6C(CO)_{17}$ unit (1a, 1b, 2a, 2b, 3a, 3b, and 4a as labeled in Scheme 12) and the two main orbitals of the $Ru_6C(CO)_{17}(PdPR_3)_2$ cluster responsible for two PdPR₃ fragments bonding to the $Ru_6C(CO)_{17}$ unit (b and a as labeled in Scheme 13).

Tables 8 and 9, respectively. An ORTEP diagram of the molecular structure of **15** is shown in Figure 10. Compound **15** consists of an Ru₆ octahedron with a carbon atom in the center, a benzene ligand coordinated to one of the ruthenium atoms, Ru(1), and a Pd(PBu^t₃) group bridging the Ru(2)–Ru(3) bond. Here once again, there was no loss of CO from the Ru₆ starting material, and thus compound **15** can be viewed as a mono-Pd-(PBu^t₃) adduct of Ru₆(CO)₁₄(η^6 -C₆H₆)(μ_6 -C). A bridging CO

Scheme 14

ligand from Ru(2) to the palladium atom helps stabilize this interaction. The Ru(2)–Pd(1) and Ru(3)–Pd(1) bond distances are 2.7929(9) and 2.8210(9) Å, respectively, and are similar to the Ru–Pd and Ru–Pt distances found in compounds **11**, **12**, and **13**.

Table 6. Selected Intramolecular Distances and Angles for $Ru_6(CO)_{17}(\mu_6\text{-}C)[Pt(PBu^t_3)]$, **12**^a

(a) Distances									
atom	atom	distance (Å)	atom	atom	distance (Å)				
Pt(1)	P(1)	2.3401(18)	Ru(3)	Ru(6)	2.8648(11)				
Pt(1)	Ru(2)	2.8834(9)	Ru(4)	Ru(5)	2.7819(7)				
Pt(1)	Ru(3)	2.8927(9)	Ru(4)	Ru(6)	3.0239(10)				
Pt(1)	Ru(6)	2.9314(6)	Ru(5)	Ru(6)	3.0161(10)				
Ru(1)	Ru(2)	3.8346(11)	Ru(1)	C(1)	2.057(5)				
Ru(1)	Ru(3)	2.8466(11)	Ru(2)	C(1)	2.047(11)				
Ru(1)	Ru(4)	2.9659(11)	Ru(3)	C(1)	2.065(10)				
Ru(1)	Ru(5)	2.9546(11)	Ru(4)	C(1)	2.104(10)				
Ru(2)	Ru(3)	3.1968(7)	Ru(5)	C(1)	2.085(9)				
Ru(2)	Ru(5)	2.8652(13)	Ru(6)	C(1)	2.041(5)				
Ru(2)	Ru(6)	2.8594(11)	O(av)	C(av)	1.14(1)				
Ru(3)	Ru(4)	2.8650(13)							
(b) Angles									

atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)
Ru(2)	Pt(1)	Ru(3)	67.209(16)	Ru(1)	Ru(3)	Ru(6)	91.53(3)
Ru(2)	Pt(1)	Ru(6)	58.90(2)	Ru(1)	C(1)	Ru(6)	173.6(3)
Ru(3)	Pt(1)	Ru(6)	58.93(2)	Ru(3)	C(1)	Ru(5)	169.9(5)
Ru(1)	Ru(2)	Ru(6)	91.89(3)				

 $^{\it a}$ Estimated standard deviations in the least significant figure are given in parentheses.

Table 7. Selected Intramolecular Distances and Angles for $Ru_6(CO)_{17}(\mu_6-C)[Pt(PBu^t_3)]_2$, **13**^{*a*}

	(a) Distances							
atom	ato	m	distance (Å)	atom	ato	m	distance (Å)	
Pt(1)	P(1)) 2	2.340(3)	Ru(2)	Ru	(3)	2.9785(10)	
Pt(1)	Ru(2) 2	2.7726(9)	Ru(2)	Ru	(5)	2.8688(11)	
Pt(1)	Ru(3) 2	2.8291(8)	Ru(2)	Ru	(6)	2.8859(10)	
Pt(2)	P(2)) 2	2.355(3)	Ru(3)	Ru	(4)	2.859711)	
Pt(2)	Ru(5) 2	2.8727(8)	Ru(3)	Ru	(6)	2.8540(11)	
Pt(2)	Ru(6) 2	2.7674(8)	Ru(4)	Ru	(5)	2.9587(10)	
Pt(3)	P(3)) 2	2.335(3)	Ru(4)	Ru	(6)	2.9554(10)	
Pt(3)	Ru(8) 2	2.8326(8)	Ru(5)	Ru	(6)	2.9573(9)	
Pt(3)	Ru(9) 2	2.7723(8)	Ru(1)	C(1) 1	2.090(8)	
Pt(4)	P(4)) 2	2.347(3)	Ru(2)	C(1) 1	2.051(8)	
Pt(4)	Ru(10) 2	2.8715(8)	Ru(3)	C(1) 1	2.065(8)	
Pt(4)	Ru(12) 2	2.7494(8)	Ru(4)	C(1) 1	2.067(8)	
Ru(1)	Ru(2) 2	2.9614(10)	Ru(5)	C(1) 1	2.068(8)	
Ru(1)	Ru(3) 2	2.975710)	Ru(6)	C(1) 1	2.021(8)	
Ru(1)	Ru(4) 2	2.8305(11)	O(av)	C(a	ıv)	1.15(1)	
Ru(1)	Ru(5) 2	2.8688(11)					
			(b) A	ngles				
atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)	
Ru(2)	Pt(1)	Ru(3)	64.23(2)	Ru(1)	Ru(2)	Ru(6)	89.31(3)	
Ru(5)	Pt(2)	Ru(6)	63.21(2)	Ru(1)	Ru(3)	Ru(6)	89.64(3)	
Ru(8)	Pt(3)	Ru(9)	64.22(2)	Ru(1)	C(1)	Ru(6)	178.4(4)	
Ru(10)	Pt(4)	Ru(12)	63.51(2)	Ru(3)	C(1)	Ru(5)	178.4(4)	

 $^{\it a}$ Estimated standard deviations in the least significant figure are given in parentheses.

An ORTEP diagram of the molecular structure of **16** is shown in Figure 11. Compound **16** consists of an Ru_6 octahedron with a carbon atom in the center, a benzene ligand coordinated to one of the ruthenium atoms, Ru(1), and two $Pd(PBut_3)$ bridging groups. Again there was no loss of CO from the starting material. Like compound **15**, the dipalladium adduct of Ru_6 -

Figure 8. ORTEP diagram of the molecular structure of $Ru_6(CO)_{17}(\mu_6-C)[Pt(PBu^t_3)]$, **12**, showing thermal ellipsoids at 30% probability.

Figure 9. ORTEP diagram of the molecular structure of $Ru_6(CO)_{17}(\mu_6-C)[Pt(PBu^t_3)]_2$, **13**, showing thermal ellipsoids at 30% probability.

Table 8.	Selected In	ntramolecular	Distances	and Angles	for
Ru ₆ (CO) ₁	$_{4}(\eta^{6}-C_{6}H_{6})($	μ ₆ -C)[Pd(PBu	^t 3)], 15 ^a	-	

	(a) Distances							
atom	ator	n c	distance (Å)	atom	aton	n (distance (Å)	
Pd(1)	P(1)	2	2.392(2)	Ru(3)	Ru(6	5) 2	.8726(9)	
Pd(1)	Ru(2	2) 2	2.7929(9)	Ru(4)	Ru(5) 2	.8274(9)	
Pd(1)	Ru(.	3) 2	2.8210(9)	Ru(4)	Ru(6	5) 2	.9547(9)	
Ru(1)	Ru(2	2) 2	2.8409(9)	Ru(5)	Ru(6	5) 2	.9110(10)	
Ru(1)	Ru(.	3) 2	2.8548(9)	Ru(1)	C(1)) 1	.928(7)	
Ru(1)	Ru(4	4) 2	2.8759(9)	Ru(2)	C(1)) 2	.037(7)	
Ru(1)	Ru(5) 2	2.8776(9)	Ru(3)	C(1)) 2	.078(7)	
Ru(2)	Ru(5) 2	2.8755(9)	Ru(4)	C(1)) 2	.119(7)	
Ru(2)	Ru(5) 2	2.9653(9)	Ru(5)	C(1)) 2	.060(7)	
Ru(2)	Ru(.	3) 3	3.0650(9)	Ru(6)	C(1)) 2	.079(7)	
Ru(3)	Ru(4	4) 2	2.8532(9)					
(b) Angles								
atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)	
Ru(2)	Pd(1)	Ru(3)	66.18	Ru(1)	C(1)	Ru(6)	178.3(4)	
Ru(1)	Ru(2)	Ru(6)	88.99(2)	Ru(3)	C(1)	Ru(5)	170.3(4)	
$R_{II}(1)$	$R_{II}(3)$	$R_{11}(6)$	88,78(3)					

 $^{\it a}$ Estimated standard deviations in the least significant figure are given in parentheses.

 $(CO)_{14}(\eta^6-C_6H_6)(\mu_6-C)$, **16**, has one Pd(PBut₃) group bridging the Ru(2)-Ru(3) bond with a CO ligand bridging the Ru(2)-Pd(1) bond, but it also has a second Pd(PBut₃) group bridging

⁽²⁷⁾ One (bridging) CO contributes 2 e⁻, two Ru(CO)₂ fragments contribute 0 e⁻ each, four Ru(CO)₃ fragments contribute 2 e⁻ each, one C contributes 4 e⁻, and two Pd(PR₃) fragments contribute 0 e⁻ each for a total of 14 e⁻ (or 7 e⁻ pairs) which provides for seven cluster bonds and a bi-capped octahedral structure. Hall, M. B. In *Metal–Metal Bonds and Clusters in Chemistry and Catalysis*; Fackler, J. P., Jr., Ed.; Plenum Press: New York: 1990; p 265.

Table 9. Selected Intramolecular Distances and Angles for Ru₆(CO)₁₄(η^6 -C₆H₆)(μ_6 -C)[Pd(PBu^t₃)]₂, **16**^{*a*}

(a) Distances							
atom	atom		distance (Å)	atom atom		n	distance (Å)
Pd(1)	P(1)		2.4030(18)	Ru(2)	Ru(3)		3.0698(7)
Pd(1)	Ru(2)		2.8275(7)	Ru(3)	Ru(4)		2.8546(8)
Pd(1)	Ru(3)		2.8052(8)	Ru(3)	Ru(6)		2.8678(8)
Pd(2)	P(2)		2.431(2)	Ru(4)	Ru(5)		2.8075(8)
Pd(2)	Ru(2)		3.1947(8)	Ru(4)	Ru(6)		2.9835(8)
Pd(2)	Ru(5)		2.8047(8)	Ru(5)	Ru(6)		2.9529(8)
Pd(2)	Ru(6)		2.8639(8)	Ru(1)	C(1)		1.936(6)
Ru(1)	Ru(2)		2.8292(8)	Ru(2)	C(1)		2.053(6)
Ru(1)	Ru(3)		2.8447(7)	Ru(3)	C(1)		2.071(6)
Ru(1)	Ru(4)	2.8450(8)	Ru(4)	C(1)		2.114(6)
Ru(1)	Ru(5)	2.8451(8)	Ru(5)	C(1)		2.064(6)
Ru(2)	Ru(6)	2.9014(7)	Ru(6)	C(1)		2.066(6)
Ru(2)	Ru(5)	2.9941(8)				
(b) Angles							
atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)

66.047(19) 88.95(2) Ru(2) Pd(1) Ru(3) Ru(1) Ru(3) Ru(6) Pd(2) 178.1(3)62.78(2)C(1)Ru(6) Ru(5)Ru(6)Ru(1)Ru(1)Ru(2) Ru(6) 88.59(2) Ru(3) C(1) Ru(5) 170.4(3)

^{*a*} Estimated standard deviations in the least significant figure are given in parentheses.

Figure 10. ORTEP diagram of the molecular structure of $\text{Ru}_6(\text{CO})_{14}(\eta^6-\text{C}_6\text{H}_6)(\mu_6-\text{C})[\text{Pd}(\text{PBu}^{t}_3)]$, **15**, showing thermal ellipsoids at 30% probability. The methyl groups have been omitted for clarity.

the Ru(5)–Ru(6) bond. Both the Ru(5)–Pd(2) and Ru(6)–Pd-(2) bonds have a bridging CO ligand. The Ru–Pd bond distances lie in the range 2.8047(8)–2.8639(8) Å and are similar to the Ru–Pd and Ru–Pt bond distances found in compounds **11**, **12**, **13**, and **15**. In the solid-state structure of **16** the two PBu^t₃ ligands are inequivalent, and so one would expect to see the two respective resonances in its ³¹P NMR spectrum. However, the ³¹P NMR spectrum of **16** shows only a single resonance even at -80 °C. Although it is possible that the molecule has adopted a different structure in solution having

⁽²⁸⁾ Simpson, C. Q.; Hall, M. B. J. Am. Chem. Soc. 1992, 114, 1641. It is well-known that symmetrically bridging carbonyl ligands reduce the direct M-M bonding because the C lone pair destabilizes the direct M-M σ bond, while the CO π* stabilizes the M-M π* orbital. On the other hand, linear semibridging carbonyl ligands use their π* to stabilize the M-M σ bond.

5266 J. AM. CHEM. SOC. UOL. 126, NO. 16, 2004

Figure 11. ORTEP diagram of the molecular structure of $Ru_6(CO)_{14}(\eta^6-C_6H_6)(\mu_6-C)[Pd(PBu^1_3)]_2$, **16**, showing thermal ellipsoids at 30% probability. The methyl groups have been omitted for clarity.

equivalent PBu^t₃ groups, it is also possible that the molecule is dynamically active on the NMR time scale and the Pd(PBu^t₃) groups are interchanging equivalent sites rapidly on the NMR time scale. We have recently shown that both Pt(PBu^t₃) and Pd(PBu^t₃) groups can migrate rapidly about the Ru₅(CO)₁₅(C) cluster.^{13b,c}

One can envision the description of the bonding interactions for compounds **12**, **13**, **15**, and **16** to be similar also to that of **11**, as in **11** the other compounds all contain an Ru₆ octahedron with M(PBu^t₃) groups (M = Pd or Pt) and bridging CO ligands to help stabilize the interactions between the ruthenium atoms and the M(PBu^t₃) groups.

Mixed-metal clusters containing ML groups, M = Cu, Ag, or Au coordinated by phosphine ligands (L = PR₃) may have similar bonding schemes when the atom M is bonded to only two additional metal atoms.²⁹ For example, the cationic group [Au(PR₃)]⁺ has only 12 e⁻ and is isoelectronic to the [M(PR₃)] (M = Ni, Pd or Pt) group. The [Au(PR₃)]⁺ group has also been shown to adopt both edge-bridging and triple-bridging bonding to triangular metal groups.³⁰

Although there have been major efforts to prepare bimetallic cluster complexes containing palladium^{31,32} and platinum^{32,33} in recent years, to date very few palladium–ruthenium complexes have been formed, and the reaction of $[Pd(\eta-C_4Ph_4)(Me_2-CO)_2]^{2+}$ with the ruthenium anions $[Ru_5(CO)_{14}(\mu_6-C)]^{2-}$ and $[Ru_6(CO)_{17}(\mu_6-C)]^{2-}$ yielded only ruthenium compounds containing the η -C₄Ph₄ ligand formed by ligand transfer.³⁴ We have

- (29) Salter, I. D. Vol. Ed. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995, vol 10, p 225.
- (30) (a) Bunkhall, S. R.; Holden, D.; Johnson, B. F. G.; Lewis, J.; Pain, G. N.; Raithby, P. R.; Taylor, M. J. *Chem Commun.* **1984**, 25. (b) Henrick, K.; Johnson, B. F. G.; Lewis, J.; Mace, J.; McPartin, M.; Morris, J. *Chem Commun.* **1985**, 1617. (c) Lavigne, G.; Papageorgiou, F.; Bonnet, J. J. *Inorg. Chem.* **1984**, 23, 609.
- (31) (a) Lee, S.-M.; Wong, W.-T. J. Cluster Sci. 1998, 9, 417. (b) Nakajima, T.; Ishiguro, A.; Wakatsuki, Y. Angew. Chem. Int. Ed. 2000, 39, 1131. (c) Brivio, E.; Della Pergola, R.; Garlaschelli, L.; Demartin, F.; Manassero, M.; Sansoni, M.; Zanello, P.; Laschi, F.; Heaton, B. T. J. Chem. Soc., Dalton Trans. 1994, 3237.
- (32) Kuwata, S.; Mizobe, Y.; Hidai, M. J. Am. Chem. Soc. 1993, 115, 8499.
- (33) (a) Farrugia, L. J. Adv. Organomet. Chem. 1990, 31, 301. (b) Pignolet, L. H.; Aubart, M. A.; Craighead, K. L.; Gould, R. A. T.; Krogstad, D. A.; Wiley, J. S. Coord. Chem. Rev. 1995, 143, 219. (c) Xiao, J. L.; Puddephatt, R. J. Coord. Chem. Rev. 1995, 143, 457.
- (34) Dyson, P. J.; Ingham, S. L.; Johnson, B. F. G.; McGrady, J. E.; Mingos, D. M. P.; Blake, A. J. J. Chem. Soc., Dalton Trans. 1995, 2749.

now demonstrated that the bis-phosphine compounds $M(PBut_3)_2$, M = Pd and Pt, are excellent reagents for the transfer of Pdand PtPBut_3 groups to ruthenium cluster compounds under mild conditions to produce a variety of new bimetallic complexes containing palladium and platinum.¹³ These compounds should be useful precursors for the preparation of bimetallic nanoparticles¹⁻⁸ for new applications in catalysis.^{9,10}

Acknowledgment. This research was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy

under Grant No. DE-FG02-00ER14980. We thank Strem for donation of a sample of $Pt(PBut_3)_2$. The work at TAMU was supported by the NSF (CHE98-00184), The Welch Foundation (A-0648), and Texas A&M University.

Supporting Information Available: CIF files for each of the structural analyses. This material is available free of charge via the Internet at http://pubs.acs.org.

JA039541P